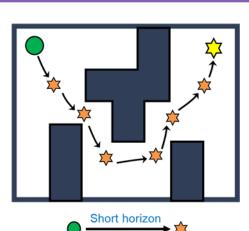
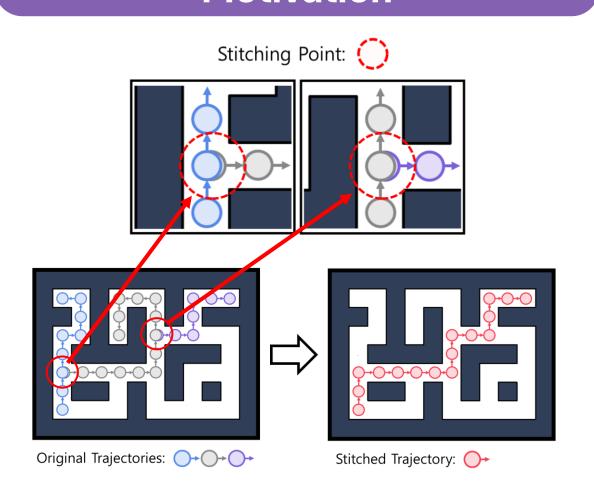


Graph-Assisted Stitching for Offline Hierarchical Reinforcement Learning


(paper, code, video)

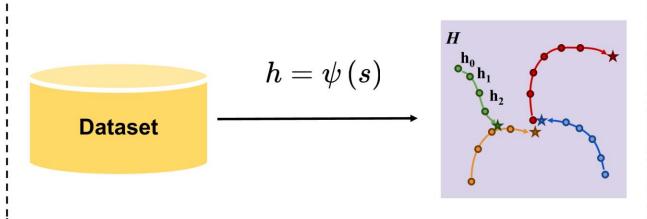
Project website

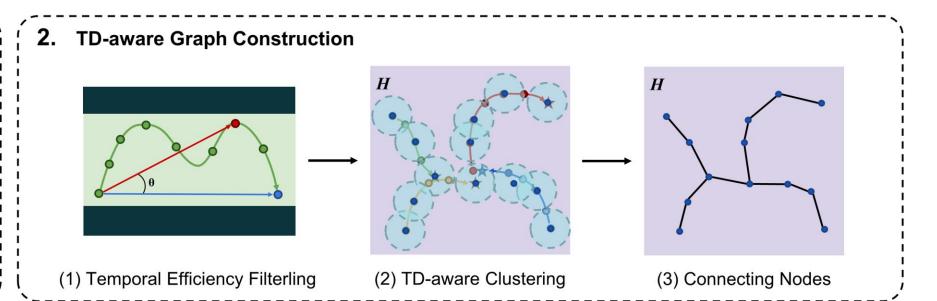
Seungho Baek, Taegeon Park, Jongchan Park, Seungjun Oh, Yusung Kim Sungkyunkwan University


Introduction

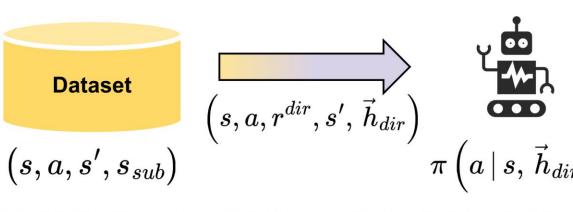
- Offline HRL introduces a two-level decision-making framework, where a high-level policy generates subgoals and a low-level policy executes primitive actions to reach them.
- This hierarchical structure decomposes complex long-horizon problems into manageable short-horizon subproblems.

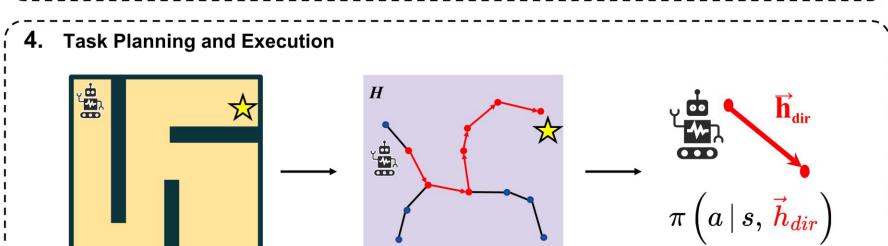
Motivation

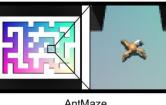



Why is Trajectory Stitching Crucial in Offline HRL?

- Stitching composes new trajectories by connecting partial segments from different goal-oriented trajectories.
- This enables agents to utilize transitions that are **temporally** disjoint and not observed within a single trajectory.
- Such stitching facilitates generalization across goals, especially in sparse-reward and long-horizon tasks.
- However, existing offline HRL methods typically lack mechanisms for cross-goal stitching, limiting their ability to compose effective subgoal sequences from suboptimal trajectories.


Overview of GAS


1. Pre-Training Temporal Distance Representation



Experiments

Datasets

Benchmark results: state-based environments

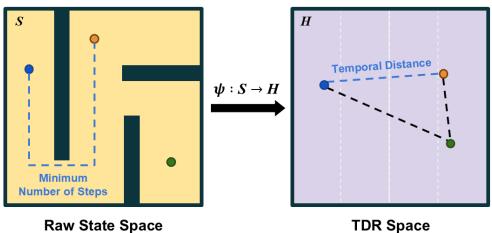
Dataset Type	Dataset	GCBC	GCIQL	QRL	CRL	HGCBC	HHILP	HIQL	GAS (ours)
Locomotion	antmaze-medium-navigate antmaze-large-navigate antmaze-giant-navigate	$33.1 \pm 5.6 \\ 23.4 \pm 3.2 \\ 0.0 \pm 0.0$	$74.6 \pm 4.8 \\ 32.6 \pm 4.7 \\ 0.1 \pm 0.4$	81.9 ± 8.2 74.9 ± 4.4 14.3 ± 3.6	95.3 ± 1.0 85.5 ± 5.3 15.0 ± 5.7	58.1 ± 5.5 44.3 ± 4.1 7.2 ± 1.7	96.3 ± 0.4 86.8 ± 3.6 53.1 ± 2.6	95.3 ± 1.3 89.9 ± 2.2 67.3 ± 5.5	96.3 ± 1.3 93.2 ± 0.5 77.6 ± 2.9
Stitching	antmaze-medium-stitch antmaze-large-stitch antmaze-giant-stitch	$43.2 \pm 7.7 \\ 2.3 \pm 3.6 \\ 0.0 \pm 0.0$	$\begin{array}{c} 26.6 \pm 6.8 \\ 9.6 \pm 3.1 \\ 0.0 \pm 0.0 \end{array}$	$67.0 \pm 10.6 \\ 20.2 \pm 1.7 \\ 0.4 \pm 0.3$	$57.0 \pm 7.9 \\ 14.4 \pm 5.9 \\ 0.0 \pm 0.0$	$65.9 \pm 5.7 \\ 10.7 \pm 5.8 \\ 0.0 \pm 0.0$	96.0 ± 1.2 34.1 ± 3.0 0.0 ± 0.0	$\begin{array}{c} 92.0 \pm 2.8 \\ 71.7 \pm 4.8 \\ 1.0 \pm 1.2 \end{array}$	98.1 ± 1.2 96.3 ± 0.9 88.3 ± 3.6
Exploratory	antmaze-medium-explore antmaze-large-explore	$\begin{array}{c} 2.7 \pm 2.8 \\ 0.0 \pm 0.0 \end{array}$	$\begin{array}{c} 11.7 \pm 1.3 \\ 0.6 \pm 0.5 \end{array}$	1.4 ± 1.2 0.3 ± 1.0	1.0 ± 1.6 0.0 ± 0.0	$15.0 \pm 8.2 \\ 0.0 \pm 0.0$	39.9 ± 7.4 2.4 ± 1.9	$32.2 \pm 3.0 \\ 2.9 \pm 4.3$	98.1 ± 0.4 94.2 ± 3.0
Manipulation	scene-play	5.4 ± 0.9 69.5 ± 14.1	50.4 ± 1.4	5.1 ± 1.7 61.9 ± 85	19.2 ± 3.0 32.7 ± 11.7	4.6 ± 1.3 71.1 ± 62	43.4 ± 5.2 66.7 ± 9.0	40.0 ± 9.6 73.1 ± 2.4	73.6 ± 8.0 87.3 ± 8.8

Benchmark results: pixel-based environments

Dataset Type	Dataset	GCIQL	QRL	CRL	HHILP	HIQL	GAS (ours)
Locomotion	visual-antmaze-medium-navigate visual-antmaze-large-navigate visual-antmaze-giant-navigate	19.1 ± 1.6 4.6 ± 1.9 1.5 ± 0.8	0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.8	93.7 ± 1.2 79.5 ± 7.5 43.4 ± 5.9	94.1 ± 1.2 85.6 ± 2.5 42.4 ± 1.9	95.5 ± 0.8 80.0 ± 2.1 34.1 ± 14.0	96.4 ± 0.5 87.0 ± 1.2 59.0 ± 2.1
Stitching	visual-antmaze-medium-stitch visual-antmaze-large-stitch visual-antmaze-giant-stitch	$\begin{array}{c} 4.2\pm1.6 \\ 0.2\pm0.3 \\ 0.0\pm0.0 \end{array}$	0.0 ± 0.0 0.1 ± 0.5 0.2 ± 0.6	$68.0 \pm 8.3 \\ 14.7 \pm 7.1 \\ 0.0 \pm 0.0$	92.4 ± 1.2 33.8 ± 1.2 3.6 ± 1.3	90.4 ± 4.1 38.5 ± 5.7 0.9 ± 1.1	90.0 ± 3.0 75.2 ± 4.4 55.8 ± 3.5
Exploratory	visual-antmaze-medium-explore visual-antmaze-large-explore	$0.0 \pm 0.0 \\ 0.0 \pm 0.0$	0.1 ± 0.3 0.0 ± 0.0	0.0 ± 0.0 0.0 ± 0.0	$0.0 \pm 0.0 \\ 0.0 \pm 0.0$	0.9 ± 1.4 0.0 ± 0.0	65.9 ± 6.8 15.1 ± 6.8
Manipulation	visual-scene-play	10.6 ± 2.7	13.5 ± 2.8	8.4 ± 0.9	35.6 ± 4.9	47.9 ± 3.9	54.4 ± 6.2

Ablation: Temporal Efficiency Filtering

Dataset	# States in Dataset	TE-Filtered States (%)		# Nodes in Graph		Normalized Return		
Dataset		All States	Ours	All States	Ours	All States	Ours	$\Delta \uparrow$
antmaze-giant-navigate	1M	100	6	2092	978	63.4 ± 3.7	77.6 ± 2.9	+14.2
antmaze-giant-stitch	1 M	100	8	3490	1966	75.3 ± 5.7	88.3 \pm 3.6	+13.0
antmaze-large-explore	5M	100	2	6213	2499	75.4 ± 4.3	94.2 ± 3.0	+18.8
scene-play	1 M	100	6	2809	725	63.5 ± 5.5	$\textbf{73.6}\pm 8.0$	+10.1


• This table compares the performance of GAS with TE filtering to a variant that constructs the graph from all states without filtering.

Performance Highlights

- Q. Does GAS excel at long-horizon reasoning?
- A. Yes, GAS shows strong performance on antmaze-giant-navigate and scene-play, which require substantial long-horizon reasoning capabilities in navigation and manipulation domains, respectively.
- Q. Does GAS demonstrate effective stitching ability?
- A. Yes, GAS outperforms baselines on antmaze-{medium, large, giant}-stitch, where the datasets consist of short goal-reaching trajectories.
- Q. Can GAS effectively learn from suboptimal datasets?
- A. Yes, GAS achieves the best performance on antmaze-{medium, large}-explore, where the datasets consist of extremely low-quality data.
- Q. Can GAS effectively handle image-based tasks?
- A. Yes, GAS demonstrates strong performance not only in state-based environments but also in *pixel-based environments*.

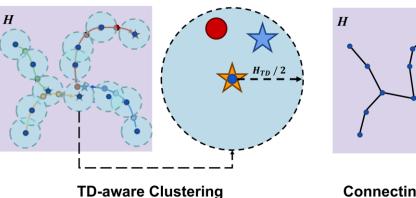
Keyldeas

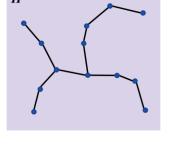
Temporal Distance Representation (TDR)

Raw State Space

• TDR_[1] ψ embeds states into a latent space H, where the **Euclidean distance** between any two points corresponds to the minimum number of steps (i.e., optimal temporal distance) required to transition from one state to another in the raw state space S.

[1] Park et al., "Foundation Policies with Hilbert Representations", ICML 2024.


Temporal Efficiency (TE)



- TE measures the directional alignment between the actual and optimal transitions over a fixed temporal distance. (Sreached: state observed H_{TD} steps after s_{cur}) (Soptimal: state at H_{TD} temporal distance from s_{cur})
- Before graph construction, filtering low-TE states reduces construction overhead and improves graph quality.

TD-aware Graph Construction

Connecting Nodes

- GAS clusters states in the TDR space at regular temporal distance intervals H_{TD} , grouping semantically similar states from different trajectories.
- Each cluster center becomes a graph node, and edges are added between nodes if their temporal distance is below $H_{-}TD$, enabling cross-goal stitching across disconnected trajectories.