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▪ Offline goal-conditioned reinforcement learning (GCRL) aims to learn 
a multi-task policy from a precollected dataset.

Offline GCRL

𝑫 = {(𝑠, 𝑎, 𝑠′)}
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▪ Long-horizon and sparse-reward tasks remain a fundamental challenge 
in offline GCRL.

Challenges in Offline GCRL
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▪ Offline hierarchical reinforcement learning (HRL) introduces a two-level 
decision-making framework, where a high-level policy generates subgoals
and a low-level policy executes primitive actions to reach them.

Offline HRL
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▪ Offline datasets often consist of diverse trajectories collected in attempts 
to achieve various goals.

Original Trajectories:

Motivation: Why is Trajectory Stitching Crucial in Offline HRL?



▪ Stitching composes new trajectories by connecting partial segments from 
different goal-oriented trajectories.

Example of trajectory stitching across different goal-oriented trajectories

Motivation: Why is Trajectory Stitching Crucial in Offline HRL?



▪ Existing offline HRL methods typically lack mechanisms for cross-goal stitching, 
limiting their ability to compose effective subgoal sequences from suboptimal 
trajectories.

Example of trajectory stitching across different goal-oriented trajectories

Motivation: Why is Trajectory Stitching Crucial in Offline HRL?



GAS: Graph-Assisted Stitching

▪ GAS formulates subgoal selection as a graph-based approach to enable efficient 
long-horizon reasoning and state transition stitching.



GAS: Graph-Assisted Stitching

▪ Temporal Distance Representation (TDR) is pretrained from an offline dataset.



GAS: Graph-Assisted Stitching

▪ TD-aware graph is constructed by selecting only high-TE states based on the 
Temporal Efficience (TE) metric. 



GAS: Graph-Assisted Stitching

▪ TD-based subgoal-conditioned low-level policy is trained using all states.



GAS: Graph-Assisted Stitching

▪ The graph is utilized for task planning and subgoal selection, 
while action execution is performed by the low-level policy.



Key Ideas

▪ Temporal Distance Representation (TDR) 

▪ Temporal Efficiency (TE)

▪ TD-aware Graph Construction

▪ TD-aware Subgoal Sampling



Temporal Distance Representation (TDR) 

▪ TDR[1] 𝝍 embeds states into a latent space 𝑯, where the Euclidean distance 
between any two points corresponds to the minimum number of steps 
required to transition from one state to another in the raw state space 𝑺.

[1]  Park et al., “Foundation Policies with Hilbert Representations”, ICML 2024. 



Temporal Distance Representation (TDR) 

▪ Through IQL-based goal-conditioned value learning scheme[2,3], 
the latent space 𝑯 preserves the optimal temporal distance in 𝑺.

TDR objective

IQL-based goal-conditioned value function

Asymmetric 𝑙2 loss that approximates max operator in the Bellman backup

[2] Kostrikov et al., “Offline Reinforcement Learning with Implicit Q-Learning”, ICLR 2022. 

[3] Park et al., “Hiql: Offline goal-conditioned rl with latent states as actions.”,  NeurIPS 2023.



Temporal Efficiency (TE)

▪ TE measures the directional alignment between the actual and optimal transitions 
over a fixed temporal distance 𝐻𝑇𝐷.
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Temporal Efficiency (TE)

▪ Before graph construction, filtering low-TE states reduces construction overhead 
and improves graph quality.

:  state observed 𝐻𝑇𝐷 steps after scur 

:  state at 𝐻𝑇𝐷 temporal distance from scur 
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TD-aware Graph Construction

▪ GAS clusters states in the TDR space at regular temporal distance intervals 𝐻𝑇𝐷, 
grouping semantically similar states from different trajectories. 



TD-aware Graph Construction

▪ Each cluster center becomes a graph node, and edges are added between nodes 
if their temporal distance is below 𝐻𝑇𝐷, enabling cross-goal stitching across 
disconnected trajectories. 



TD-aware Subgoal Sampling

▪ To train the low-level policy, a subgoal 𝑠𝑠𝑢𝑏 is selected based on 
a fixed temporal distance 𝐻𝑇𝐷 within the same trajectory.



TD-aware Subgoal Sampling

▪ The selected subgoal is transformed into a direction vector 
and used in the low-level policy objective.

Transform subgoal into direction vector

Low-level policy objective (DDPG+BC[4])

[4] Fujimoto & Gu., “A Minimalist Approach to Offline Reinforcement Learning”, NeurIPS 2021.



Experiments

▪ We evaluate GAS on OGBench[5] and D4RL[6] benchmarks, spanning diverse 
dataset types such as Locomotion, Stitching, Exploratory, and Manipulation.

[5] Park et al., “OGBench: Benchmarking Offline Goal-Conditioned RL”, ICLR 2025. 

[6] Fu et al., “D4RL: Datasets for Deep Data-Driven Reinforcement Learning”, arXiv 2020.  



Questions

Q1. Does GAS excel at long-horizon reasoning?

Q2. Does GAS demonstrate effective stitching ability?

Q3. Can GAS effectively learn from suboptimal datasets?

Q4. Can GAS effectively handle image-based tasks?



Results on state-based environments

Q1. Does GAS excel at long-horizon reasoning?



Results on state-based environments

Q2. Does GAS demonstrate effective stitching ability?



Results on state-based environments

Q3. Can GAS effectively learn from suboptimal datasets?



Results on pixel-based environments

Q4. Can GAS effectively handle image-based tasks?



Conclutions

▪ GAS demonstrates superior performance across four key abilities:

(1)  Long-horizon reasoning

(2)  Trajectory stitching

(3)  Learning from suboptimal datasets

(4)  Handling image-based tasks

▪ We propose GAS that leverages a graph-based approach for subgoal selection

without the need for explict high-level policy learning.

TE filtering enhances graph quality and reduce construction overhead.

TD-aware graph construction enables efficient trajectory stitching.

(paper, code)
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