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Offline GCRL

= Offline goal-conditioned reinforcement learning (GCRL) aims to learn
a multi-task policy from a precollected dataset.
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Challenges in Offline GCRL

* Long-horizon and sparse-reward tasks remain a fundamental challenge
in offline GCRL.

Long horizon
O > 1

Current State Final Goal



Offline HRL

= Offline hierarchical reinforcement learning (HRL) introduces a two-level
decision-making framework, where a high-level policy generates subgoals
and a low-level policy executes primitive actions to reach them.

Short horizon

O > 1

Current State Subgoal



Motivation: Why is Trajectory Stitching Crucial in Offline HRL?

» Offline datasets often consist of diverse trajectories collected in attempts
to achieve various goals.
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Motivation: Why is Trajectory Stitching Crucial in Offline HRL?

» Stitching composes new trajectories by connecting partial segments from
different goal-oriented trajectories.
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Example of trajectory stitching across different goal-oriented trajectories



Motivation: Why Is Trajectory Stitching Crucial in Offline HRL?

» Existing offline HRL methods typically lack mechanisms for cross-goal stitching,
limiting their ability to compose effective subgoal sequences from suboptimal

trajectories.
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Example of trajectory stitching across different goal-oriented trajectories



GAS: Graph-Assisted Stitching

= GAS formulates subgoal selection as a graph-based approach to enable efficient
long-horizon reasoning and state transition stitching.

Dataset
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GAS: Graph-Assisted Stitching

» Temporal Distance Representation (TDR) is pretrained from an offline dataset.
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GAS: Graph-Assisted Stitching

» TD-aware graph is constructed by selecting only high-TE states based on the
Temporal Efficience (TE) metric.




GAS: Graph-Assisted Stitching

* TD-based subgoal-conditioned low-level policy is trained using all states.




GAS: Graph-Assisted Stitching

= The graph is utilized for task planning and subgoal selection,
while action execution is performed by the low-level policy.
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Key Ideas

Temporal Distance Representation (TDR)
Temporal Efficiency (TE)
TD-aware Graph Construction

TD-aware Subgoal Sampling



Temporal Distance Representation (TDR)

= TDRp ¢ embeds states into a latent space H, where the Euclidean distance
between any two points corresponds to the minimum number of steps
required to transition from one state to another in the raw state space §.
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[1] Park et al., “Foundation Policies with Hilbert Representations”, ICML 2024.




Temporal Distance Representation (TDR)

* Through IQL-based goal-conditioned value learning scheme,,
the latent space H preserves the optimal temporal distance in S.
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[2] Kostrikov et al., “Offline Reinforcement Learning with Implicit Q-Learning”, ICLR 2022.
[3] Park et al., “Higl: Offline goal-conditioned rl with latent states as actions.”, NeurlPS 2023.




Temporal Efficiency (TE)

» TE measures the directional alignment between the actual and optimal transitions
over a fixed temporal distance Hyp.

B Sreached | State observed Hpp steps after Scu

B Sopima  State at Hyp temporal distance from Scu

Low Temporal Efficiency High Temporal Efficiency

[ @ Sicached ® Sopimal -+~ Direction Vector = Trajectory ]




Temporal Efficiency (TE)

= Before graph construction, filtering low-TE states reduces construction overhead

and improves graph quality.

B Srached : State observed Hpp steps after sor

m Sopima : State at Hyp temporal distance from Scur

Low Temporal Efficiency High Temporal Efficiency

[ @ Sicached ® Sopimal -+~ Direction Vector = Trajectory ]

'// TE Filtering
Initialize TDR state set: H < 0:
for each trajectory 7 € D do
for each state s¢, € 7 do
hcur — w(scur)
Optimal state: hop = V(F (Scur, Hrp)) // Eq. (7)
Actual reached state: Ageached = ¥ (Scur+Hrp )
GTE - COs(h(}pt - hcura hreached - hcur)
if QTE Z 9?%51] then
H < HU {heu}
end if
end for

\ end for




TD-aware Graph Construction

= GAS clusters states in the TDR space at regular temporal distance intervals Hyp,
grouping semantically similar states from different trajectories.
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// TD-Aware Clustering

Y {hl}

C1 < {hl}

for each state h; € H,7 > 1 do

Find the nearest center: h. = arg minycy ||h; — hl|2

if ||h; — he|l2 > Hrp/2 then
Create a new cluster: C; <— {h;}
Insert a new cluster center node: V <V U {h;}
else
Assign h; to existing cluster: C. < C. U {h;}
end if
end for

TD-aware Clustering
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TD-aware Graph Construction

= Each cluster center becomes a graph node, and edges are added between nodes
if their temporal distance is below H;p, enabling cross-goal stitching across

disconnected trajectories.
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TD-aware Clustering Connecting Nodes

// Graph Edge Connection

Initialize edge set £ <+ ()

for each pair of nodes (v;,v;) € V do
Compute distance: d;; = ||v; — vj]|2
if dij < HTD then

E+EU {(’Ui,”Uj)}

end if

end for




TD-aware Subgoal Sampling

= To train the low-level policy, a subgoal s,,; Is selected based on
a fixed temporal distance H;, within the same trajectory.
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TD-aware Subgoal Sampling

* The selected subgoal is transformed into a direction vector
and used in the low-level policy objective.

E'D [Q(St: /J'W(St: }_?:dir):l Edir) + Oflog ﬂ-(a | St Hdir)]
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. Low-level policy objective (DDPG+BCj)
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(Y i_idir — dir(h(s), Y (Seup)) = Y (Ssub) — UV (S¢t)

Y (ssub) — (s

Transform subgoal into direction vector

Sampledssum where ||¢(Ssub) _lp(st)llz ~ HTD

[4] Fujimoto & Gu., “A Minimalist Approach to Offline Reinforcement Learning”, NeurlPS 2021.
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Experiments

* We evaluate GAS on OGBenchjs; and D4RLs benchmarks, spanning diverse
dataset types such as Locomotion, Stitching, Exploratory, and Manipulation.

Locomotion Stitching Exploratory
Dataset Types

[5] Park et al., “OGBench: Benchmarking Offline Goal-Conditioned RL”, ICLR 2025.
[6] Fu et al., “D4RL: Datasets for Deep Data-Driven Reinforcement Learning”, arXiv 2020.



Questions

Q1. Does GAS excel at long-horizon reasoning?
Q2. Does GAS demonstrate effective stitching ability?
Q3. Can GAS effectively learn from suboptimal datasets?

Q4. Can GAS effectively handle image-based tasks?



Results on state-based environments

Q1. Does GAS excel at long-horizon reasoning?

Dataset Type Dataset GCBC GCIQL QRL CRL HGCBC  HHILP HIQL GAS (ours)
antmaze-medium-navigate 33.1 +56 74.6 +48 819 +82 953 +10 58.1+55 963 +04 953 +13 96.3 +13

Locomotion antmaze-large-navigate 234 +32 326 +47 749 +44 855+53 443 +41 868 +36 899 +22 93.2 +05
antmaze-giant-navigate 0.0 £ 0.0 0.1 £04 143 +36 15057 72417 53.1+26 673 +55 77.6 +29

Wil scene-play S54+09 504 +14 S1+17 192 +30 46+13 434 +52 40.0 +96 73.6 380
P kitchen-partial 69.5 +141 355.6+175 619 +8s 32.7x117 T1.1+62 66,7 £90 73.1 £24 87.3 £33

Locomotion




Results on state-based environments

Q2. Does GAS demonstrate effective stitching ability?

Dataset Type Dataset GCBC GCIQL QRL CRL HGCBC HHILP HIQL GAS (ours)
antmaze-medium-navigate 33.1 +56 74.6 +48 819 +82 953 +10 58.1+55 963 +o04 953 +13 96.3 + 13

Locomotion antmaze-large-navigate 234 £32 326 +47 749 +44 855+53 443 +41 86.8+36 899 +22 93.2 +05
antmaze-giant-navigate 0.0 £ 00 0.1 +t04 143 +36 150x57 72+17 53.1+26 67.3+55 77.6 +29
antmaze-medium-stitch 432 +£77 266 +68 67.0x106 57.0+£79 659 +57 96012 92.0+28 98.1 + 1.2

Stitching antmaze-large-stitch 2.3 +£36 9.6 £31 202+17 144 +59 10.7+58 34.1 £30 71.7 +48 96.3 +09
antmaze-giant-stitch 0.0 £ 0.0 0.0 £ 0.0 0.4 +03 0.0+00 0.0+00 0.0=+00 1.0 +£12 88.3 +36

T scene-play 54+09 504 +14 51+17 192 4+30 46+13 434 +52 40.0 +96 73.6 +380
P kitchen-partial 69.5 £141 55.6 £175 619 +s8s5s 32.7 117 7T1.1xe62 66.7 90 73.1 £24 87.3 +383

Locomotion Stitching



Results on state-based environments

Q3. Can GAS effectively learn from suboptimal datasets?

Dataset Type Dataset GCBC GCIQL QRL CRL HGCBC HHILP HIQL GAS (ours)
antmaze-medium-navigate 33.1 +56 74.6 +48 81.9+82 953 +10 58.1+55 963 +o04 953 +13 96.3 +13

Locomotion antmaze-large-navigate 234 £32 326 +47 749 +44 855+53 443 +41 868 +36 899 +22 93.2 +05
antmaze-giant-navigate 0.0 £ 00 0.1 +04 143 +36 150xs57 72417 53.1+26 67.3+55 77.6 £2.9
antmaze-medium-stitch 432 +77 266 +68 67.0x106 57.0+£79 659 +57 960 +12 92.0+28 98.1 +1.2

Stitching antmaze-large-stitch 2.3 +36 9.6 +31 202 +17 144 +s59 10.7+58 34.1+30 7T1.7 £48 96.3 +0.9
antmaze-giant-stitch 0.0 £ 0.0 0.0 £ 0.0 0.4 +03 0.0+00 0.0+00 0.0=+00 1.0 £12 88.3 +36

Explorator antmaze-medium-explore 27 £28 11.7 +13 14 +12 1.0+16 15.0+82 399174 322 +30 98.1 +04
P y antmaze-large-explore 0.0 £ 0.0 0.6 +05 0.3 +10 0.0+00 00+00 24+19 29 +43 94.2 +30
Ml scene-play 54 +09 504 +14 51 +17 192 +30 46+13 434 +52 40.0 +96 73.6 8.0
P kitchen-partial 69.5 +141 55.6 £175 619 +8s5 32.7 £117 71.1+e62 66.7 90 73.1 £24 87.3 +383

Locomotion Stitching Exploratory



Q4. Can GAS effectively handle image-based tasks?

Results on pixel-based environments

Dataset Type Dataset GCIQL QRL CRL  HHILP HIQL GAS (ours)
visual-antmaze-medium-navigate 19.1 +16  0.0+00 93.7+12 941 +12 955 +os8 96.4 + 05

Locomotion visual-antmaze-large-navigate 46 +19 00+00 795+75 85.6+25 80.0+21 87.0 +12
visual-antmaze-giant-navigate 1.5+08 02+08 434 +s59 424 +19 341 +140 59.0 +£2.1
visual-antmaze-medium-stitch 42 +16 00+00 680+83 924 +12 904 +41 90.0 3.0

Stitching visual-antmaze-large-stitch 02+03 01zxo0s 14771 338+12 38.5+57 75.2 + 44
visual-antmaze-giant-stitch 00+00 02+06 00x00 3.6+13 09 +1.1 55.8 +35

- visual-antmaze-medium-explore 0.0+00 0.1+03 00x00 0.0+00 0.9 +14 65.9 +638
P y visual-antmaze-large-explore 00+00 00+00 00x00 0.0+00 0.0 £ 00 15.1 + 638
Manipulation  visual-scene-play 10.6 £27 135+28 84 +09 356+49 479 +39 544 +62

Locomotion

Stitching

Exploratory




Conclutions

» We propose GAS that leverages a graph-based approach for subgoal selection
without the need for explict high-level policy learning.

v TE filtering enhances graph quality and reduce construction overhead.

v TD-aware graph construction enables efficient trajectory stitching.

* GAS demonstrates superior performance across four key abillities:

Project website

1) Long-horizon reasoning ( de)
paper, coae

2) Trajectory stitching

3) Learning from suboptimal datasets
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4) Handling image-based tasks
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